Chapter 19

Nutrient Cycling and Retention
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Chapter Focus

® Nutrient cycling
v'Phosphorus
v'Nitrogen
v'Carbon
v'Water
® Decomposition
® Biotic effect on nutrient distribution and
cycling
® Disturbance
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Global biogeochemical cycles

® Nutrients are moved by winds & water
(groundwater, streams, currents)

® No boundaries
® Global in scale
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The hydrological cycle
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Phosphorus Cycle

® Global phosphorus cycle does not include
substantial atmospheric pool
v'Largest quantities found in mineral deposits
and marine sediments
= Much of this in forms not directly available to
plants

v’ Slowly released in terrestrial and aquatic
ecosystems via weathering of rocks
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The Phosphorus Cycle
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(b) The nitrogen cycle
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Nitrogen Cycle

® Includes major atmospheric pool —
v Only nitrogen fixers can use atmospheric
supply directly
= Energy-demanding process
> N, reduced to ammonia (NH;)
= Once N is fixed — available to organisms

» Upon death of organism, N can be
released by fungi and bacteria during
decomposition
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The Nitrogen Cycle
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(d) The carbon cycle
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Carbon Cycle

® Moves between organisms and
atmosphere as a consequence of
photosynthesis and respiration

v'In aquatic ecosystems, CO, must first
dissolve into water before being used by
primary producers

v'Although some C cycles rapidly, some
remains sequestered in unavailable forms
for long periods of time
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The Carbon Cycle
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Human impacts on biogeochemical cycles

® Human activities contribute significant
inputs of nutrient to ecosystem and
disrupt local and global biogeochemical
cycles

® Fox example: burning of fossil fuels (CO,,
NO & S), agricultural practices and
sewage disposal (N & P)

® Discussed later
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Concepts

® Decomposition rate is influenced by
temperature, moisture, and chemical
composition of litter and environment
® Plants and animals can modify the

distribution and cycling of nutrients in
ecosystems

® Disturbance increases ecosystem
nutrient loss
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Decomposition Rates

® Rate at which nutrients are made
available to primary producers is
determined largely by rate of
mineralization
v'Occurs primarily during decomposition

= Rate in terrestrial systems is significantly
influenced by temperature, moisture, and
chemical compositions
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Decomposition — Mediterranean

® Gallardo and Merino found chemical and
physical factors affected rates of
decomposition in woodland ecosystems

® Study sites: same temperature, but different
elevation and precipitation

@ Different decomposition rates due to
precipitation, leaf toughness, and N contents
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Leaf Decomposition
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Soft leaves with higher| |Tough leaves with lower
nitrogen content lost nitrogen content lost
more mass. less mass.
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Decomposition in Temperate Forest
Ecosystems

® Melillo et al. used litter bags to study
decomposition in temperate forests
v'Found leaves with higher lignin:nitrogen
ratios lost less mass

= Suggested higher N availability in soil might
have contributed to higher decomposition
rates

= Higher environmental temperatures may have
also played role
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Decomposition is more
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Forest Decomposition

Annual leaf mass loss in
tropical forests is about
150 three times that occurring
in temperate forests.

100

Annual mass loss (%)
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Decomposition in Aquatic
Ecosystems

® Gessner and Chauvet found leaves with a
higher lignin content decomposed at a
slower rate

v'Higher lignin inhibits fungi colonization of
leaves

® Suberkropp and Chauvet found leaves
degraded faster in streams with higher
nitrate concentrations
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Leaf Lignin & Decomposition

Leaves with higher lignin
content decomposed at a
much slower rate.
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Nitrate & Decomposition

Yellow poplar leaves
decompose faster in streams
0.04ywith higher nitrate content.

Daily decomposition rate (k)
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Phosphorus & Decomposition

Rate of leaf decomposition
increased rapidly as phosphorus ||Rate then leveled off at higher
concentration increased. concentrations of phosphorus.
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Nutrient Cycling in Streams

® \Webster pointed out nutrients in streams
are subject to downstream transport
v'Little nutrient cycling in one place
= Nutrient Spiraling
v’ Spiraling Length = Length of stream
required for a nutrient atom to complete a
cycle

= Related to rate of nutrient cycling and
velocity of downstream nutrient movement
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Nutrient Spiraling in Streams

The transport of %
nutrients by Nutrient release from
streams is slowed | the benthos transport
by nutrient by water, and
uptake by the downstream uptake m
benthic ecosystem. by the benthos _
Stream - — | produce nutrient
water Nutrient spiraling.
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Nutrient Cycling in Streams

® Spiraling Length (S):
S=VT
V = Average velocity of a nutrient atom
T = Average time to complete a cycle
v'Short lengths = high nutrient retentiveness
v'Long lengths = low nutrient retentiveness
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Stream Invertebrates and Spiraling
Length

® Grimm showed aquatic invertebrates
significantly increase rate of N cycling
v'Suggested rapid recycling of N by
macroinvertebrates may increase primary
production

= Excreted and recycled 15-70% of nitrogen
pool as ammonia
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Nitrogen Fluxes

Nitrogen
retained

100

[ Biomass increases coupled with |Nitrogen -
rapid fluxes of nitrogen between D.Ipfake Dissolved

consumers and primary i, 82 nitrogen

producers contribute to nitrogen . . -

retention in Sycamore Creek. N Egestion +
g }( mortality

: 50-105 7@
Algal and detrital (i
biomass increase | 7 i
9

[ .fhl.:IiJ.éh macroinvertebrate biomass includes |
| only 10% retained nitrogen, they ingest a large
| proportion of available nitrogen. |

Molles: Ecology 3 Ed.

Animals and Nutrient Cycling in
Terrestrial Ecosystems

® Huntley and Inouye found pocket gophers
altered N cycle by bringing N-poor subsoil
to the surface

® \Whicker and Delting found prairie dog’s
feeding activity affected nutrient
distribution in grassland ecosystem
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By burrowing and building mounds,

pocket gophers increase heterogeneity Nitrogen & Grass Location

in soil nitrogen and light penetration. Low light
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Biomass Turnover & Grazing

Large grazers speed up
nutrient cycling on the
Serengeti ecosystem.

® MacNaughton found a positive relationship R
between grazing intensity and rate of b || Inungrazed plots,
turnover in plant biomass in Serengeti Plain required to turn aver
v'Without grazing, nutrient cycling occurs more

| plant biomass.
slowly through decomposition and feeding of
small herbivores

When a substantial
proportion of annual
production is consumed
Fiant biomass turns over
n less than 1 year.
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Plants and Ecosystem Nutrient
Dynamics

® Fynbos is a temperate shrub/woodland known
for high plant diversity and low soil fertility
v'Two species of Acacia used to stabilize
shifting sand dunes
v Altering nutrient dynamic
= Decomposition rate
= Litter
= Soil N
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® \Witkowski compared nutrient dynamics
under canopy of native shrub and introduced
Acacia
v Amount of litter was similar, but nutrient
content was significantly different

v'Acacia — N fixer

http://www.botany.uwc.ac.za/envfacts/fynbos/fynbos.htm ...
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Plant Litter Nitrogen

Acacia litter contains
approximately 10

than litter of
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Leucospermum

Species
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' The nitrogen content |

of Myricaleavesis
|approximately twice |
that of Metrosideros |

20
leaves.

Nitrogen inputs (kg/a/year)
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Introduced Tree and Hawaiian
Ecosystem

@ Vitousek and Walker found invading N-fixing
tree Myrica faya is altering N dynamics of
Hawaiian ecosystems

v Introduced in late 1800’s as ornamental or
medicinal plant — later used for watershed
reclamation

= Nitrogen fixation by Myrica large N input
> Leaves contain high N content
- High decomposition rate
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Disturbance and Nutrient Loss - the
Hubbard Brook Forest

@ Vitousek studied effects of disturbance and
environmental conditions on N loss
v Trenching increased concentrations of
nitrate in soil water up to 1,000 x
= Nitrate losses generally greatest at sites with
rapid decomposition
> Uptake by vegetation is most important in
ecosystems with fertile soils and warm,
moist conditions
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Deforestation & Nitrate Loss

Clear-cutting the
experimental basin
increased losses of

nitrates more than

E_ 10 times

5%

BE

5B

2%

3¢

o ®

=0

= 1965 1966 1967 1968

Year

R
o
Molles: Ecology 3 Ed. b g

Phosphorus Import to Export

During years of low During high flow years, Bear
streamflow, Bear Brook| | Brook exports more
stores phosphorus. phosphorus than it receives.
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Flooding and Nutrient Export by
Streams

® Meyer and Likens found P exports were
highly episodic and associated with
periods of high flow
v'Annual peak in P input associated with
spring snowmelt

= Most export was irregular because it was
driven by flooding caused by intense
periodic storms

e .
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Daily Phosphorus Change
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Summary

® Decomposition rate is influenced by
temperature, moisture, and chemical
composition of litter and environment

® Plants and animals can modify the
distribution and cycling of nutrients in
ecosystems

® Disturbance increases ecosystem nutrient
loss
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