

Definitions

- Succession Gradual change in plant and animal communities in an area following disturbance
 - Primary Succession on newly exposed geological substrates
 - Secondary Succession following disturbance that does not destroy soil
- Climax Community Late successional community - remains stable until disrupted by disturbance

Chapter Concepts

- Community changes during succession include increases in species diversity and changes in species composition
- Ecosystem changes during succession include increases in biomass, primary production, respiration, and nutrient retention
- Mechanisms that drive ecological succession include facilitation, tolerance, and inhibition
- Community stability may be due to lack of disturbance or community resistance

Molles: Ecology 3rd Ed.

Primary Succession – Glacier Bay, Alaska

- *Reiners et al.* (1971) studied changes in plant diversity during succession
 - Total number of plant species (species richness) increased with plot age
 - Species richness increased rapidly in early years of succession and more slowly during later stages
 - Not all groups increased in density throughout succession (different composition)

Secondary Succession in Temperate Forests

- Oosting (1942) found number of woody plant species increased during secondary succession at Piedmont Plateau
- Johnston and Odum found increase in bird diversity across successional sequence closely paralleled increase in woody plant diversity observed by Oosting

Succession in Rocky Intertidal Communities

- Easy manipulation
- The first species green alga (*Ulva*) and the barnacle
- The next perennial red algae
- Finally perennial red algae (*Gigartina canaliculata*) dominated
- 1.5 years as compared to 1500 yrs in Glacier Bay and 150 yrs in Piedmont Plateau

Ecosystem Changes During Succession

 Ecosystem changes during succession include increases in biomass, primary production, respiration, and nutrient retention

Ecosystem Changes at Glacial Bay

- Chapin (1994), Glacier Bay
 - Total soil depth and depth of all major soil horizons show significant increase from pioneer community
 - Soil properties (influencing the kinds of organisms that can grow) also changed during succession, i.e.,
 - Organic content, moisture, and N concentrations all increased
 - > Physical and biological systems inseparable

Four million years of changes

- Studies at Glacial Bay
- Chronosequence the sequence of ages represented by the study sites

- Hedin et al. (2003) Hawaii islands, chronoseqence of forest ecosystem
 - Different islands have different historic development (300 to 4,100,000 yrs) in their rocks due to volcanic lava flows

Recovery of nutrient retention after disturbance

- Bormann and Likens (1981) in the Hubbard Brook Experimental Forest
- Cut forest and suppress vegetation growth by herbicides
- High nutrient losses during the suppressed period
- When the herbicide applications were stopped, succession proceeded and nutrient losses decreased dramatically

Succession and stream ecosystem properties

- Sycamore Creek, Arizona
- Succession happened within in 63 days after flooding
- Show similar pattern as proposed by the biomass accumulation model

- Algal biomass increased rapidly for the first 13 days and then decreased more slowly afterwards
- Ecosystem metabolic parameters (e.g., photosynthetic rate) show leveling off
- The level of retention increased rapidly during succession, then leveling off to eventually 0 (balance state, input = output)

Successional Mechanisms in Rocky Intertidal Zone

- Sousa investigated mechanism behind succession of algae and barnacles in intertidal boulder fields.
 - If inhibition model is in effect, early successional species should be more vulnerable to mortality
 - Results showed early successional species had lowest survivorship and were more vulnerable to herbivores

Evidence for Inhibition Removing Ulva increased colonization by the late-successional Number of Gigartina (per 25 cm²) alga, Gigartina. 30 20 Low colonization by Gigartina Ulva removed suggests that Ulva inhibited 10 colonization of Ulva left in control plots. place 0 12 40 88 120 Days since Ulva removal Molles: Ecology 3rd Ed.

Mechanisms in Old Field Succession

- Keever (1950), Piedmont Plateau
- What was the causes of early species replacements?
- Results support the inhibition model and the facilitation model

Mechanisms in Primary Succession on a Volcanic Substrate

- 1980 Mt St. Helens, Washington erupted
 - ✓ Disturbance set stage for succession
 - Avalanche debris, hot volcanic ash and pumice killed all plant life
- Morris and Wood studied influences of facilitation, tolerance, and inhibition on early succession on pumice plains
 - Found complex blend of influences

Three pioneering species

- Pearly everlasting (Anaphlis margaritacea)
- Fireweed (*Epilobium angustifolium*)
- Perennial Lupine (Lupinus lepidus) a Nfixer
- The first two species disperse by wind and rapidly colonize
- The third species does not disperse easily

Molles: Ecology 3rd Ed.

Fireweed (*Epilobium angustifolium*)

Glacial Bay

- Field observations, field experiments, and greenhouse experiments
- Chapin (1994) found no single factor or mechanism determines the pattern of primary succession – complex influences

Community and Ecosystem Stability

- Dodd et al. (1995) showed although community stability is present, populations of individual species can change substantially
 - Stability depends on spatial resolution an area is investigated at
 - Landscape, form, and species levels

Replicate Disturbances and Desert Stream Stability

- Sycamore Creek, Arizona
- Valett et al. (1994) tested the hypothesis that ecosystem resilience is higher where hydrologic linkages between the surface and subsurface water increase the supply of N – a nutrient limiting the primary production

- Negative vertical flow from the surface to the streambed – downwelling zone
- ✓ Zero vertical stationary zone

The concentration of nitrate in surface water varies directly with vertical hydraulic gradient

- Upwelling zones have the highest nitrate concentration due to upwelling from the sediments
- Nitrate concentrations gradually decline

- The rate of algal biomass accumulation can be used as a measure of rate of recovery from disturbance
- Therefore, the rate of ecosystem recovery is higher in upwelling zones since the rate of algal biomass accumulation is higher in this region
- i.e., algal communities in upwelling zones are more resilient

Summary

- Community changes during succession include increases in species diversity and changes in species composition
- Ecosystem changes during succession include increases in biomass, primary production, respiration, and nutrient retention
- Mechanisms that drive ecological succession include facilitation, tolerance, and inhibition
- Community stability may be due to lack of disturbance or community resistance

