POPULATION GROWTH

Chapter 11

Chapter Concepts

 1. With abundant resources, populations can grow at geometric or exponential rates.

2. As resources are depleted,?

Estimating Rates of An Annual Plant-ch 10

- P. drummondi
 - R_o = net reproductive rate; Avg. number of seeds produced by an individual in a population during its lifetime.

$$R_o = I_x m_x$$

X= age interval in days.

$$I_x = ?$$

$$m_x=?$$

Estimating Rates of An Annual Plant-ch 10

- P. drummondi
- R_o = <u>net reproductive rate</u>;
 - Avg. number of seeds produced by an individual in a population during its lifetime.

$$R_o = I_x m_x$$

X= age interval in days.

 $I_x = \%$ pop surviving to each age (x).

m_x= avg. number seeds produced by each individual in each age category.

Estimating Rates of An Annual Plant-ch10

• Because *P. drummondii* has non-overlapping generations, can estimate growth rate.

• Geometric Rate of Increase ():

$$=N_{t+1}/N_t$$

 N_{t+1} = Size of population at future time.

N_t = Size of population at some earlier time.

Estimating Rates when Generations Overlap-ch10

- Common Mud Turtle (K. subrubrum)
 - About half turtles nest each year.
 - Avg. generation time:

$$T = xI_x m_x / R_o$$

X=age in years

Per Capita Rate of Increase:

$$r = In R_o / T$$

In =base natural logarithms

Geometric Growth

• When generations do not overlap, growth can be modeled geometrically.

$$N_t = N_0$$

 $N_t = \#$ individuals at time t.

 N_o = initial # of individuals.

= geometric rate of increase.

t = # of time intervals or generations.

Exponential Growth

 Continuous population growth in an unlimited env. can be modeled exponentially.

dN/dt = rN

=the change in numbers with change in timer =the per capita rate of increase

As population size (N) increases,
rate of pop.increase (dN/dt) gets larger.

Exponential Growth

 For an exponentially growing pop., size at any time can be calculated as:

$$N_t = N_o e^{rt}$$

- N_t = # individuals at time t.
- N₀ = initial # of individuals.
- e = base of natural logarithms.
- r = per capita rate of increase.
- t = number of time intervals.

Ex. Pollen records (Bennett 1983)
→ growth of postglacial pine pop in Britain.
assump: the rate of pollen deposition is prop to the size of tree pop around a lake

- Ex. Collared dove
 - Expand into W Europe, British Isles
 - 1955-72, exponential growth
 - ♦ > 1970 slow down, Env Limitation

Chapter Concepts

• 2. As resources are depleted, population growth rate slows and eventually stops: logistic population growth.

Logistic Population Growth

- * Sigmoid (S-shaped) pop. growth curve.
- Carrying Capacity (k) is the number of individuals of a population the env. can support.
 - Finite amount of resources can only support a finite number of individuals.

• Carrying Capacity (k) is likely determined by a complex interplay among factors, e.g. food, parasitism, disease, and space....

Adathematical model helps...

Logistic Population Growth

$$dN/dt = r_m N(1-N/k)$$

- r_m = max. per capita rate of increase under ideal conditions.
- r_m = intrinsic rate of increase
- When N nears K, right side of the equation nears zero.
 - As pop. size increases, logistic growth rate becomes a small fraction of growth rate.
- Highest pop size when N=k/2.
- N/k = environmental resistance.

Chapter Concepts

• 3. The environment limits population growth by changing birth and death rates.

```
= b - d
```

b = birth rate

d =death rate

Limits to Population Growth

- Environment limits population growth by altering birth and death rates.
 - Density-dependent factors:
 - Disease, Resource Competition
 - Density-independent factors:
 - Natural Disasters

Galapagos Finch Population Growth

 Boag and Grant - Geospiza fortis was numerically dominant finch (1,200).

- Highly variable rainfall at Galapagos Is.
 - pop fluctuated greatly

- After drought of 1977, pop. fell to 300.
 - Food plants failed to produce seed crop.
 - 1983 10x normal rainfall caused population to grow (1,100) due to abundance of seeds and caterpillars.

 Ex. Grant & Grant large cactus finch on Genovesa Is, 1978-88 two droughts

Cactus Finches and Cactus Reproduction

- Grant and Grant documented several ways finches utilized cacti:
 - Open flower buds in dry season to eat pollen.
 - Consume nectar and pollen from mature flowers.
 - Eat seed coating (aril).
 - Eat seeds
 - Eat insects from rotting cactus pads.

Cactus Finches and Cactus Reproduction

- Finches tend to destroy stigmas, thus flowers cannot be fertilized.
 - Wet season activity may reduce seeds available to finches during the dry season.
 - Opuntia helleri main source for cactus finches
 - Negatively impacted by El Nino (1983).
 - Stigma snapping delayed recovery.
 - Interplay of biotic and abiotic factors.

Chapter Concepts

 4. On avg., small organisms have higher (r) and more variable pops. – while large organisms have lower (r) and less variable pops.

Intrinsic Rates of Increase

 On average, small organisms have higher rates of per capita increase and more variable populations than large organisms.

Pop. Growth by Small Marine Invertebrates

- Populations of marine pelagic tunicate
 (Thalia democratica) grow at exponential
 rates in response to phytoplankton plumes.
 - Numerical response can increase pop. size dramatically due to extremely high reproductive rates.

Growth of A Whale Population

- Pacific Gray Whale (*Eschrichtius robustus*) divided into Western and Eastern Pacific subpopulations.
- Rice and Wolman estimated avg. annual mortality rate of .089 and calculated annual birth rate of 0.13. (from life table)
 - *0.13-.089 = .041
 - Gray Whale pop. Growing at 4.1% per yr.

Growth of A Whale Population

- Reilly et.al. used annual migration counts from 1967-1980 to obtain 2.5% growth rate.
- Thus from 1967-1980, pattern of growth in California Gray Whale pop fit exponential model:

$$N_{t} = N_{o}^{e0.025t}$$

By 1993, pop reached 21,000=prewhaling level

Applications to human population

- Distribution is highly clumped at large scales
- Asia
 - China & India
- Coastal area

Populaiton dynamics

- Vary widely from region to region, and country to country
- Exam: age distributions, birth rates & death rates of 3 countries.

- In 1997
- Lithuania, b=0.014, d=0.013, r=0.001
- Hungary, b=0.011, d=0.015, r= -0.004
- Rwanda, r=0.018
- Predict their pop dynamic trends?

E N D