Two-species interactions

Types	Response	Response
	of Sp A	of Sp B
Competition	-	-
Predation	+	-
Parasitism	+	-
Parasitoidism	+	-
Herbivory	+	-
Neutral		
Mutualism		
Commensalism		
Amensalism		

Two-species interactions

Types	Response of Sp A	Response of Sp B
Competition	-	-
Predation	+	-
Parasitism	+	-
Parasitoidism	+	-
Herbivory	+	-
Neutral	0	0
Mutualism	+	+
Commensalism	+	0
Amensalism	-	0

Species competition

Ch.13 Molles 3rd ed, 2005 Ch.6 Townsend, Harper, Begon 2nd ed, 2003

Competition—key condition?

- Share common resource
- □ Limit of resource

Modes of Competition

Competing methods:

- Interference: Direct aggressive interaction between individuals.
- Exploitation (resource cmp): Rate of utilizing resource

□ Competing subjects:

- Intraspecific: Competition with members of their own species.
- Interspecific: Competition between individuals of two species

Outlines

- 1. Resource limitation.
- 2. Niche
- 3. Mathematical and laboratory models
- 4. Ecolg. and evolut. influences on niches.
 - Coexistance
 - 2. Assemble rule

Chapter Concepts

- I. Studies of Intraspecific competition provide evidence for resource limitation.
- □ A key role in slowing pop growth at high density
 - Sigmoidal growth pattern
- □ Ex. Plant growth rate, Planthoppers growth

Resource Competition

- □ Intraspecific Competition Herbaceous Plants
 - Plant growth rates and weights have been found to increase in low density populations.
 - Competition for resources is more intense at higher population densities.
 - leads to mortality among competing plants.
 - Self-thinning

Intraspecific Competition Among Planthoppers

- Denno and Roderick, demonstrated intraspecific competition within populations of planthopper, Prokelesisia marginata (Homoptera)
 - Probably result of limited resources.
 - → body length, develp time, survivorship

Chapter Concepts

- II. A <u>niche</u> reflects the environmental requirements of a species.
- History of niche concepts:
 - Grinnell 1917, 24-- Physical environment
 - Elton 1927-- Biological interactions
- Niche: summarizes environmental factors that influence growth, survival, and reproduction of a species. (current view)

Niches

- Hutchinson:
- □ defined niche as "a n-dimensional hyper-volume"
 - n equates the number of environmental factors important to survival and reproduction of a species.
- □ Fundamental niche –no species interactions
- □ Realized niche: includes interactions such as competition that may restrict environments where a species may live.

Ex. Feeding Niches of Galapagos Finches

- Grant found differences in beak size among ground finches translates directly into diet.
- Size (& hardness) of seeds eaten can measured by estimating by measuring beak depths.
- Effect of 1977 drought?

- Graint found differences in beak size among ground finches translates directly into diet.
 - Size of seeds eaten can measured by estimating by measuring beak depths.
 - Individuals with deepest beaks fed on hardest seeds.
 - After 1977 drought, remaining seeds were very hard.
 - thus mortality was most heavy in birds with smaller beaks.
 - pop was dominated by larger birds at the end of the drought.

Chapter Concepts

- III. <u>Mathematical</u> and <u>laboratory</u> models provide theoretical foundation for studying competitive interactions in nature.
- Metz summarized characters of models:
 - Abstractions and simplifications of nature.
 - Man-made construct; partly empirical and partly deductive.
 - Used to provide insights into natural phenomena.

Mathematic model--Lotka-Volterra Model

- □ Vito Volterra 1926, for explaining changes in the composition of a marine fish community in response to reduced fishing during WW I.
- Alfred Lotka 1932 independently repeated Volterra's analysis and extended it to pop density change during competition.

Mathematic model--Lotka-Volterra Model for 1 species

$$\frac{dN}{dt} = rN \left(\frac{K - N}{K} \right)$$

Logistic model for population growth, r: the per capita rate of increase r_m : intrinsic rates of increase

L-V Model for two sp

$$\frac{dN_1}{dt} = r_{\rm ml} N_1 \left(\frac{K_1 - N_1 - \alpha N_2}{K_1} \right)$$

$$\frac{dN_2}{dt} = r_2 N_2 \left(\frac{K_2 - N_2 - \beta N_1}{K_2} \right)$$

: effect between individual of each species.

Mathematical Model

- -- Lotka Volterra
- Effect of interspecific competition on pop. growth of each species:
- - effect of individual of species 2 on rate of pop. growth of species 1.
 - effect of individual of species 1 on rate of pop. growth of species 2.

Lotka-Volterra Model

- Predict pop growth for the two species will stop when:
- □ For sp 1: $N_1 = k_1 k_1 k_2$ (k_1 , k_1/α_{12})
- □ For sp 2: $N_2=k_2-2_1N_1$ $(k_2/\alpha_{21}, k_2)$ or $(k_2/\beta, k_2)$

Zero Growth Isoclines

- Above: pop. Increasing
- Below: pop. Decreasing

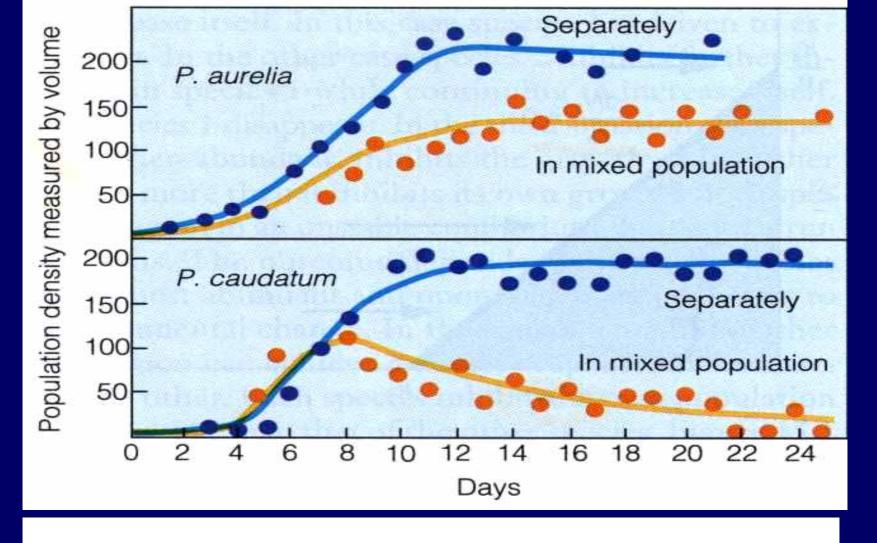
When two species coexist,

$$\square k_1/\alpha_{12} > k_2 \rightarrow K_1 > k_2\alpha_{12}$$

$$\square k_2/\alpha_{21} > K_1 \rightarrow K_2 > K_1 \alpha_{21}$$

$$\rightarrow 1 > \alpha_{12} * \alpha_{21}$$

Lotka-Volterra Model


■ In general, LV predicts coexistence of two species when interspecific competition is weaker than intraspecific competition.

Evidence for interspecific competition

- In the laboratory
 - Ex. Paramecium
 - Ex. Flour Beetle

Paramecia Lab Experiments

- □ Gause, Paramecium caudatum, P. aurelia
- in two different concentrations of Bacillus pyocyaneus.

Figure 15.2 Competition experiments with two ciliated protozoans, *Paramecium aurelia* and *P. caudatum*, grown separately and in a mixed culture. In a mixed culture *P. aurelia* outcompetes *P. caudatum*, and the result is competitive exclusion.

- When grown alone, carrying capacity determined by intraspecific competition.
- When grown together, P caudatum quickly declined.

Reduced resource supplies increased competition.

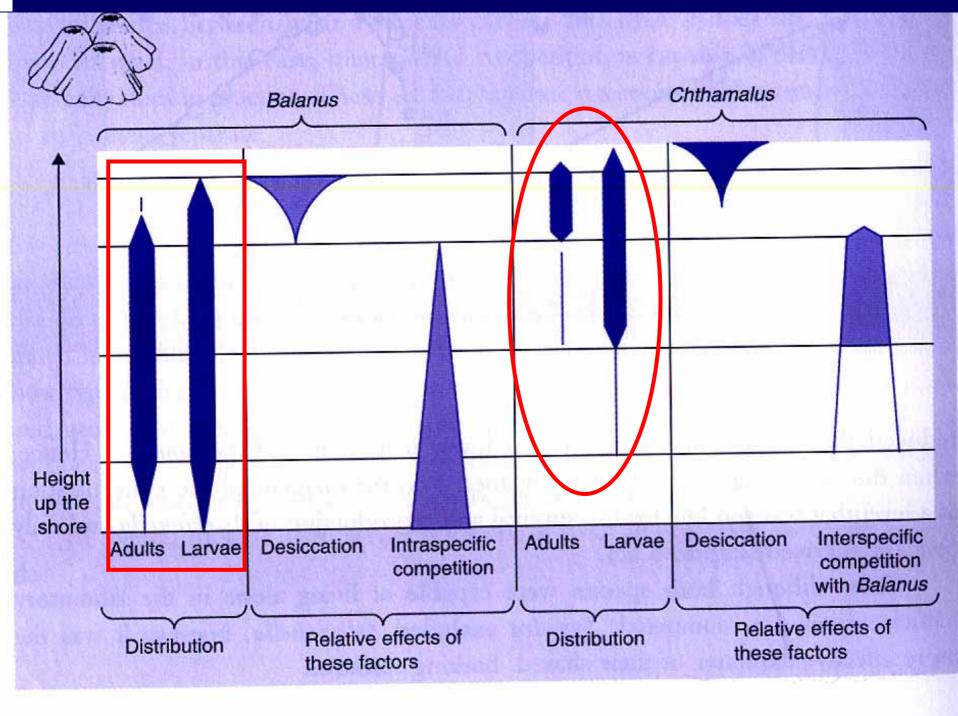
Competitive exclusion principle = Gause's Principle

- An Russian ecologist, GF Gause
- Two species with identical niches cannot coexist indefinitely. One will be a better competitor and thus have higher fitness and eventually exclude the other.

- In the laboratory
 - Ex. Paramecium
 - Ex. Flour Beetle

Chapter Concepts

IV. Competition can have significant ecological and evolutionary influences on the niches of species.


- Evidence in the field
 - Ex. Barnacle
 - Ex. Small rodents
 - Ex. Galapagos finches

Competition Examples

- Barnacles: Balanus play a role in determining lower limit of Chthamalus within intertidal zone. (Connell)
 - Did no account for all observed patterns.

The intertidal distribution of Chthamalus stellatus & Balanus balanoides

- Competition evidence?
- □ Removal exp: remove B. → C. could persisted
 - Not remove, B. grew over and crushed the smaller C. individuals when they occurred in the same zone. → direct interference
- Why not exclude C. totally?
 - B. appears unable to survive the desiccating conditions

Competition and Niches

- Competition can restrict species to their realized niches.
- But if competitive interactions are strong and pervasive enough, they may produce an evolutionary response in the competitor population.
- → Changes fundamental niche.

IV. Competition can have significant ecological and evolutionary influences on the niches of species.

- Evidence in the field
 - Ex. Barnacle
 - Ex. Small rodents
 - Ex. Galapagos finches

Brown studied competition among rodents in Chihuahuan Desert

a) Kangaroo rat,

Dipodomys spp,

a large granivore


b) A pocket mouse,

Pergonathus sp.

a small granivore

Competition Examples

- Brown, rodents, Chihuahuan Desert.
- Predicted: if competition among rodents is mainly for food, then if remove larger granivorous rodents
 - → effect on small granivorous ones?
 - effect on Insectivorous ones?
- Results supported hypothesis.

IV. Competition can have significant ecological and evolutionary influences on the niches of species.

- Evidence in the field
 - Ex. Barnacle
 - Ex. Small rodents
 - Ex. Galapagos finches

Character Displacement

- interspecific competition has been predicted to lead to <u>directional selection for reduced</u> <u>niche overlap.</u>
- Ex. Galapagos finches
 - Geospiza fortis (medium ground finch),
 - G. fuliginosa (small ground finch)

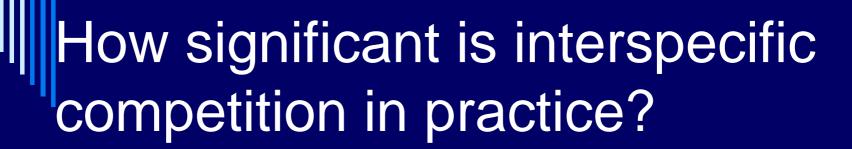
6 criteria for character displacement

- M. Taper & T Case (1992)
- 1. diff bwt sympatric > allopatric populations
- 2. have a genetic basis
- □ 3. not due to original diff in founder pops
- 4. variations have effect on use of resource
- 5. competition demonstrated
- 6. not explained by resource availability
 - (e.g. no diff of food availability on both sites)

* Coexistance Factors

- Ecological factors
 - Variation in space & time
 - (= Environmental heterogeneity)
- □ Evolutionary factors
 - Competition ghost
 - Character displacement

Ecological Coexistance


- Environmental heterogeneity
 - =spatial and temporal variation
- Ex. Mussels and sea palm (alga)
 - Coast of Washington, gap formation

Coexistance factors-Evolutionary factors

- Competition ghost
 - Ex. Israeli rodents
- Character displacement
 - Ex. Canadian sticklebacks (fish)
 - Ex. Galapagos finches

Coexistance factors-Evolutionary factors

- Competition ghost
- Ex. Israeli rodents
 - (Meriones-blue, Gerbillus-pink)
 - a <u>niche differentiation</u> of the realized niches, but also fundamental niches.

- The prevalence of current competition
 - Surveys of published studies

Effect on the assembling of a community? Assembly rule exists? through competition or mere by chance (= neutral models)

How widespread is intersp competition in Nature?

- 2 Surveys (1983), current competition
- □ Schoener, 164 studies, 390 sp, 150 exp
 - 90% of studies, 57-76% of species show significant competition
- □ Connell, 72 studies, 215 sp, 527 exp
 - Most studies, >50% species, 40% exp show significant competition
 - large>small org., Marine > terrestrial

Critiques:

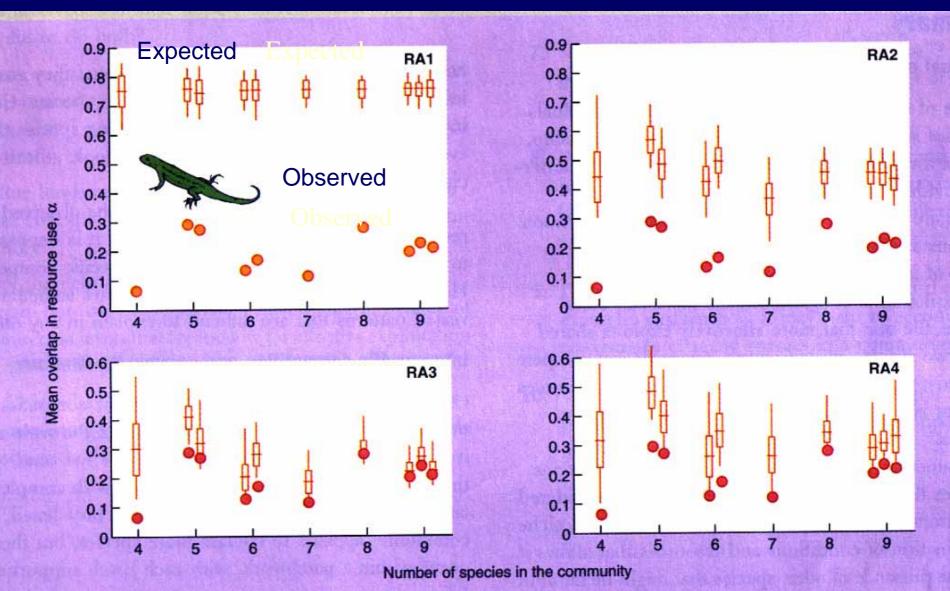
Conclusion could be exaggerated

- Biased selection and reported studies
- too less exp on phytophagous insects
- More studies in temperate & mainland area

Is species in a community randomly assembled? (Neutral model)

Prediction: competing sp should be arranged regularly rather than randomly in niche space

- □ Test for Neutral model (null hypothesis):
 - the data are rearranged into a form representing what the data would looks like in the absence of interspecific competition.



10 N Am. Lizard communities4-9 species, 20 food categoriesCalculate mean resource overlap

Lowlor (1980): mean observed & expected resource overlap


100 randomly constructed comm., 4 reorganization Algorithms (RA):

1: retained the mim original comm structure, 4: retained the most of the orig comm struct

- Summary

 ☐ Studies of Intraspecific competition provide evidence for resource limitation.
- A niche reflects the environmental requirements of a species.
- Mathematical and laboratory models provide theoretical foundation for studying competitive interactions in nature.
- Competition can have significant ecological and evolutionary influences on the niches of species.
 - Ex. Character displacement, niche differentiation, competition ghost, free distribution...

END!