EXPLOITATION: PREDATION, HERBIVORY, PARASITISM & DISEASE

螳螂捕蟬 黃雀在後!! The links between consumers and their preys

Molles Chapter 14; Townsend ch8

- A cenerary of a winter at temperate zone
- Moose, wolve, intestine parasite
- strongest links: Herbivore-plant,
 Predator-Prey, Parasite-host
- → exploitation interaction

Molles: Ecology 2nd Ed.

Definitions

- Exploitation: Interaction between populations that enhances fitness of one individual while reducing fitness of the exploited individual.
 - ♦ i.e. Interaction (+,)
- Predator (broad def): Any organism that <u>consumes all or part</u> of another living organism, thereby benefiting itself but reducing the growth, fecundity, or survival of the prey. (Townsend et al 2003)

Types of predators

- "True predators":
 - kill prey, 1 to many preys
- Grazers (similar to Herbivores):
 - Not kill prey, consume only part of prey, ~many preys
 - Ex. Herbivores, blood-sucking leeches
- Parasites
 - Consume part of host, not kill, 1 or few prey
 - (microparasites & macroparasites)
 - Pathogens: induce disease
- Parasitoid
 - Consume 1 larva host, kill host when it hatch out

Chapter Concepts

I. Complex interactions:

Exploitation weaves populations into a web of relationships that defy easy generalization.

A parasitoid wasp, which uses its long ovipositor to insert its eggs into the larvae of other insects, where they develop by consuming their host.

Parasite/Pathogens manipulate host beh --Change the competition outcome

- Ex. Spring-Headed Worm (Acanthocephalans)
 change behavior of amphipods (aquatic)
 - Infected amphipods swim toward light shallow water closer to predators.
 - infected amphipods more likely be eaten by host (duck, beaver, muskrat).

Parasite/Pathogens manipulate host beh

Ex.
Acanthocephalan
Terrestrial isopod
(pill bug)
European starling

Parasite/Pathogens manipulate host beh

- Ex. Acanthocephalan (Plagiorhynchus cylindraceus), terrestrial isopod (=pill bug, Armadillidium vulgare), European starling, Sturnus vulgaris, (Moore1983, 1984ab) fig 14.2
 - Infected isopod become positive phototaxis
- Moore(1983, 84)'s Exp: (infctd or uninfctd. Grp)
 - Exp1: beh observation
 - (staying shelter, humidity, light substrate)
 - * Exp2: capture rates, fig 14.3 (10 inf +10 uninfect)
 - Exp3: infection rate
 - 0.4% (infected isopod), 32%(infected nestlings)

Molles: Ecology 2nd Ed.

Parasite/Pathogens manipulate host beh

- Rust fungus (Puccinia monoica)
- Host: mustard plants (Arabis spp.)
 - * fungus infects Arabis rosettes,
 - invades meristemic tissue (actively dividing).
 - Pseudo-flowers (cluster of bright yellow leaves)
 are fungal structures, sugar-containing
 spermatial fluids.
 - →Attract pollinators
 - → Accomplish sexual reproduction
 - → Kill plant or not form seeds

Change the competition outcome

- Park (1948,65)
- protozoan parasite (Adeline tribolii) influences competition in flour beetles (Tribolium).
- Adelina lives as intercellular parasite.
 - Reduces density of *T. castaneum*, but little effect on *T. confusum*.
 - > T. castaneum is usually the strongest competitor, but...(with the presence of Adelina, T. confusum becomes strongest competitor).

Chapter Concepts

- II. Optimal foraging strategy
 - a) Optimal diet model (diet width)
 - b) Optimal foraging theory (OFT) on staying time

Optimal Diet Width

- Most animals consume a narrower range of food types than they are morphologically capable of consuming.
- Optimal diet model

Optimal diet model

Criteria: increase diet width if

$$E_2/h_2 > E_1/(s_1+h_1)$$
 (喜嗜性 1>2)

E: energy, h: handling time, s: searching time

- E₂/h₂: The rate of intake, energy per unit time, if it handles the second-best type
- E₁/(s₁+h₁): The rate of intake the best one, instead it searches for the most profitable type

Optimal diet model

Criteria: $E_2/h_2 > E_1/(s_1+h_1)$ Predictions:

- Handling time short→ generalist
- Handling time long → specialist (ex. Lions & preys)
- Env resource dec (i.e. S incr) → broaden diet width, fig 8.12
- Ignore unprofitable food abundance

Optimal Foraging Theory

Optimal Foraging Theory

c: local patch productivity, d: searching distance,

e: env average productivity

Optimal Foraging Theory-Criticisms

- OFT is a caloric maximization model, easy to fail its test
- Constraints:
 - Pressure of predation and competition
 - Nutrient balance-specific nutritional requirement

Chapter Concepts

III. Effect of Exploitation on P-P/H population

- Predators, parasites, and pathogens influence the distribution, abundance, and structure of prey/host populations.
- Effect on individual & population level
 - Ex. Caddisfly & its food (algae, bacteria)
 - Ex. Cactus & Moth
 - Ex. Red foxes & mange mites

Effect of Exploitation-Herbivory

- Ex. Caddisfly (Helicopsysche, stream insect)
 & its food (algae, bacteria)
- California, creek, 25% of tot biomass of benthic animals
- Exp: ceramic tiles, left for 7 weeks, fig 14.7
- Exp: remove herbivor, raise tiles 15 cm above (caddisfly can't crawl up)
- Fig 14.8, 9, 10

Effect of Exploitation-Herbivory

- Ex. Introduced Cactus and Herbivorous Moth
 - Mid 1800's prickly pear cactus Opuntia stricta
 was introduced to Australia (for ornament originally).
 - Established populations in the wild.
 - Govt. asked for biological control
 - Moth (Cactoblastis cactorum) found to be effective predator.
 - Reduced by 3 orders of magnitude in 2 years.
 - 12000 ind/ha → 27 ind/ha
 - Area covered: 24 million ha → a few thousands

Effect of Exploitation-parsitism, predation

- Ex. Sweden, Red foxes, (Vulpes vulpes),
 - * mange mites (Sarcoptes scabiei, pathogens)
 - ♦ 1975, → 1984 disease (skin deterioration, death), reduce fox pop >70%
- Effect on fox's prey? (Fig 14.13 effect on hares)
- Hare incr 2-4 times, Cyclic fluctuation!

Cycles of Abundance in Snowshoe Hares And Their Predators

- Snowshoe Hares & Lynx
 - extensive trapping records by company.
- Sunspot hyp: Elton proposed abundance cycles driven by variation in <u>solar radiation</u>.
- Overpopulation theories (Keith):
 - Decimation by disease and parasitism.
 - Physiological stress at high density.
 - Starvation due to reduced food.
 - → finally, none of above cn accounts pop cycles completely,

Figure 16.15 The three-way interaction of woody vegetation, snowshoe hare, and lynx. Note the time lag between the cycles of the three populations.

Snowshoe Hares - Role of Food Supply

- Live in boreal forests dominated by conifers.
 - Dense growth of understory shrubs.

- In winter, browse on buds and stems of shrubs and saplings such as aspen and spruce.
 - → (減量)One pop. reduced food biomass from 530 kg/ha in late Nov. to 160 kg/ha in late March.
 - → (減質) can increase levels of plant chemical defenses, reducing usable food supplies.

Snowshoe Hares - Role of Predators

- Lynx (Classic specialist predator)
 - Coyotes may also play large role.
- Predation can account for 60-98%
 mortality during peak densities of hares.
- Complementary:
 - Hare populations increase, causing food supplies to decrease. Starvation and weight loss may lead to increased predation, all of which decrease hare populations.

- Exp test of food or predation impacts
 - Charles J Krebs
 - ⋄ 9 of 1 km² plots of boreal forests, 3 cotrl G
 - Given unlimited supplemental food, removal of predator by electric fences
 - Monitor for 8 years
 - ♦ Fig 14.15

How are the cycles generated? Hare-plant or predator-hare cycle?

Plant effect, Pred effect > Hare cycle

Yes Yes Cycle
No (add) No (excld) No (abun=10folds)
Yes No Cycle
No Yes Cycle