Mutualism & other interactions

Molles ch 15, and Townsend ch 7

Definitions

- Mutualism: Interactions between individuals of different species that benefit both partners.
 - Facultative (非必要的) Mutualism a species can live without its mutualistic partner.
 - Obligate (必要的) Mutualism a species is dependent on a mutualistic relationship.
 - Margulis: all eukaryotes originated as mutualistic associations.

How important is mutualism to the ecological integrity?

Imagine ...

- Hummingbird & flower...
- Plant's mycorrihizae
- Deer & protozoans, bacteria in gut
- Microworld: evolution of eukaryote (ancient mutualism, mitochondria, chloroplasts)

Chapter Concepts

Plants benefit from mutualistic partnerships with a wide variety of bacteria, fungi, and animals.

 Plants are the center of M relationships— (nutrient absorption, pollination, seed dispersal)

Plant Mutualisms

Plant performance & Mycorrhizal Fungi (菌根真菌)

- Two most common types of mycorrhizae:
 - Arbuscular mycorrhizal fungi (AMF) (叢狀菌根)
 - Produces arbuscules site of exchange between plants and fungi.
 - Ectomycorrhizae (ECM) (外生菌根)
 - Forms mantle around roots important in increasing plant access to phosphorus and other immobile nutrients.

Coral-like ectomycorrhizae

外生菌根

Fig 15.2

(Smith&Smith 1998, f17.6)

TORROGEN TORROT

叢狀菌根

Molles fig15.2b

Mycorrhizae & Plant Water Balance

- Allen and Allen studied water relations of grass Agropyron smithii.
 - Plants with mycorrhizae maintained higher leaf water potentials.
 - Plants with greater access to phosphorus may develop roots that are more efficient at extracting and conducting water.

Fungi influence on water transpiration

Hardie Exp:

Remove hyphae, tracer dye

- → Reduce transpiration rate
- → Mycorrhizal hyphae provide extra contact surface for absorption

Influence by Nutrient Availability? Balanced mutualism? (Mut-> Parasitism)

- Imbalanced benefits: (公平交易?)
 - Fungal partner received an equal or greater quantity of photosynthetic product in trade for low quantity of nutrients.
- In nutrient poor environments, many plants invest disproportionately in roots.
 - Found higher root investment in low N soils.

Can fertilization of soil select for less mutualistic mycorrhizal fungi?

Johnson's exp

Nutrient Availability - Johnson

- Suggest: mycorrhizal fungi from unfertilized soils supplied plants with more nutrients.
 - Plants able to invest more energy in aboveground photosynthetic material (inflorenscences).

Ants and Bullshorn Acarcia

- Acarcia ants (Pseudomyrmex 假相思樹屬)
- Larger colony size, 12-hr activity outside of the nest, highly-aggressive defenders.
- Ant Benefits:
 - Thorns provide living space.
 - Folliar nectaries(蜜腺) provide sugar.
 - Beltian Bodies (貝氏體) source of oils and protein.

Plants offer nectar and Beltian bodies

Fig 15.7

Figure 7.7

Structures of the Bull's Horn acacia (*Acacia cornigera*) that attract its ant mutualist. (a) Protein-rich Beltian bodies at the tips of the leaflets. (b) Hollow thorns used by the ants as nesting sites. (Courtesy of L. E. Gilbert.)

Evidence For Mutualism

- Ant needs plant, but do Acacias need ants?
- Janzen Exp on plant performance:
 - Growth rate, fig 15.8
 - Mortality, fig 15.9
 - Herbivore insect loading, fig 15.10

Temperate Mutualism

- Potential conflict between mutualists?
 - Ex. Aspen sunflower produce extrafloral nectaries, ants (temperate plant protection)
 - Overlapped in time? Yes, in space?
 - Flowers restricted to older shoots, foliar nectar & Beltian body occur on new shoots
- Raine, Willmer & Stone exp: Repellent in the flowers,.. Fig 15.11, fig 15.12

Chapter Concepts

 Reef-building corals depend on mutualistic relationships with algae and animals.

Coral Mutualisms Zooxanthallae and Corals

- Zooxzanthallae live within coral tissues.
 - Zooxzanthallae receive nutrient from coral.
 - coral receives organic compounds synthesized by zooxanthallae during photosynthesis.

Coral Mutualisms

- Corals' manipulations:
 - Control Z's release of organic compounds: by "signal compounds" that alter permeability of zooxanthallae cell membrane.
 - Control Z's population growth rate and density by influencing organic matter secretion. (1/10~1/100)
 - Imbalanced growth, secrete more carbohydrate,>90% carbohydrate used by coral
- Main zooxanthallae benefit is: Uptakes ammonium excreted by coral.

Coral Protection Mutualism

- Glynn found 13 coral spp. protected by crustacean mutualists.
 - crustacean mutualists substantially improved chances coral will avoid attack by sea stars. (decr predation rate)

Crustaceans: Pistol shrimp & crabs

Coral Protection Mutualism

- Also found crab activity promotes <u>coral health and</u> <u>integrity</u>.
 - Pocillopora coral increases production of fat bodies in the presence of crabs.
 - Digestive tract of crabs inhabiting corals contained large quantities of lipids.

Chapter Concepts

Theory predicts mutualism will evolve where the benefits of mutualism exceed the costs.

Evolution of Mutualism

- Theory predicts mutualism will evolve where the benefits of mutualism exceed the costs.
 - Keeler developed models to represent relative costs and benefits of several types of mutualistic interactions.

- $\mathbf{W}_{m} = \mathbf{p}\mathbf{w}_{ms} + \mathbf{q}\mathbf{w}_{mu}$
 - Successful mutualists
 - Give and receive benefits.
 - Unsuccessful mutualists
 - Give, but do not receive benefit
- W_{nm}, Non-mutualists
 - Neither give nor receive benefit.

Evolution of Mutualism

- For a population to be mutualistic, fitness of successful mutualists must be greater than unsuccessful or non-mutualists.
 - If not, natural selection will eventually eliminate the interaction.
- \blacksquare $W_m > W_{nm}$
- $pw_{ms} + qw_{mu} > W_{nm}$

- Selection coefficient, s= 1-w, w=1-s
- S = f (H, A, D, I) (P389, eq 4,5,6)代入
 - H: proportion damaged by herbivory
 - A: ant protection
 - D: other defense
 - I: plant investment toward Ants

Facultative Ant-Plant Mutualisms

- Keeler proposed for a facultative ant-plant mutualism to evolve and persist,
- p [H (1-D)A] > I_A
- proportion of plant's energy budget ants save from <u>destruction by herbivores</u> must exceed proportion of the plant's energy budget <u>invested</u> in extrafloral nectaries and nectar.
 - i.e. Benefit > cost

Facultative Ant-Plant Mutualisms

- $p (H (1-D)A) > I_A$
- Conditions that may produce this mutualism?
- Low proportion of plant's energy budget invested in extrafloral nectaries.(low I_A)
- High probability of attracting ants. (high *p*)
- High potential for herbivory. (high H)
- Low effectiveness of alternate defenses.(low D)
- Highly effective ant defense.(high A)

Chapter Concepts

- Applications:
- Mutualism & Humans
 - Greater honeyguide birds, Indicator indicator
 - 15/17 sp native to Africa, feed on waxes
 - Tropical savanna & dry forest
 - Brood parasite, (nestling with bill hooks)
 - Guiding behavior

- Guiding behavior
- First written report, Dos Santos, 1569
- East Africa, Mozambique
- Scientifically examination, 1955, Friedmann
- Proverbs.. → long association history
- Could originated from honey badger, Human vocalizations imitate the calls of honey badgers
- Fig 15.23

- Isak & Reyer, Boran people, Kenya
- Investigated the communication model
- People use penetrating whistle to attract birds
- How birds attract people? (leadingfollowing chain behavior)
- How to give instructions on direction & distance?

- When arrive the destination,
 - Bird emits a distinctive guiding call (incr freq)
- When arrive bee nest,
 - bird give a few special "indication" calls, perch & remain silent

Supplement

Types of interactions	Respns of sp. A	Respns of sp. B
Competition	_	_
Amensalism	_	0
Neutralism	0	0
Mutualism	+	+
Commensalism	+	0
Parasitism	+	-
Parasitoidism	+	_
Predation	+	_
Herbivory	+	_

Consumer-Resource (+, -) = Exploitation

Predation
Parasitism
Parasitoidism
Herbivory

Mutualism (+,+)

- Nonsymbiotic:
 - Mycorrhizae
 - **Pollination**
 - Cleaning reef fish
 - Dispersal (squirrel& nuts)
- Symbiotic:
 - lichens, algae& coral,
 - fermentation bacteria

Compare:parasites vs. mutualists

- No. of species, P >> M
- Life cycles, M is simpler, not require host alternation
- Parasites are dominant by dispersal
- M almost complete suppression of sex no battle btw Mutualist and Host

Commensalism (+, 0)

Ex. Detritivore-detritus

Alleopathy (-, 0) 相剋作用

- Allelo-: other individuals
- -Pathy: injury
- Causing injury to other individuals by chemical released by residents
- Important in Agriculture
- One type of Amensalism

Indirect interaction-Apparent competition

Indirect interaction-Apparent competition

Indirect interaction— (at the same trophic level)

Indirect interaction— At the same trophic level

Apparent competition

END!