第二次期中考

16 May 2005 (Monday)

10:30-12:00

Community Structure

Molles, ch 17

Chapter Concepts

- Food webs
- Keystone species
 - Keystone predator
 - Exotic predators
 - Mutualistic keystone sp
 - Human role

Chapter Concepts -- Food webs

- A food web summarizes the feeding relations of a community.
 - Earliest: Elton (1927), simple food webs,
 Bear Island, high Arctic, impoverished faunas

Ex. Fig 17.3

Food Web Complexity

- Complexity of FW incr dramatically for more diverse communities
- Can simplify food webs in various ways:
 - Only included common species.
 - Top-predator sink.

(FW consists all items consumed by the prey of the top predator, and so on down to the base of the FW)

Excluded weakest trophic links.

Chapter Concepts -- Keystone species

- The feeding activities of a few keystone species may control the community structure.
 - Keystone predator
 - Exotic predator
 - Keystone mutualist
 - Human as keystone sp

Keystone Species

• If keystone species <u>reduce</u> likelihood of <u>competitive exclusion</u>, their activities would <u>increase the number of species</u> that could coexist in communities.

Keystone predator

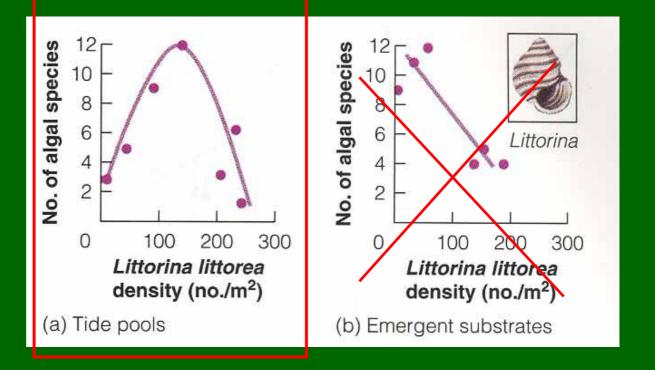
- Ex. Paine (1966, 1969)
 Intertidal zone, Washington, 49°N
 - K. predator= starfish
- Ex. Lubchendo 1978,
 - K. predator= snail
- Ex. Power 1990, fish, river, California
 - K. predator= fish

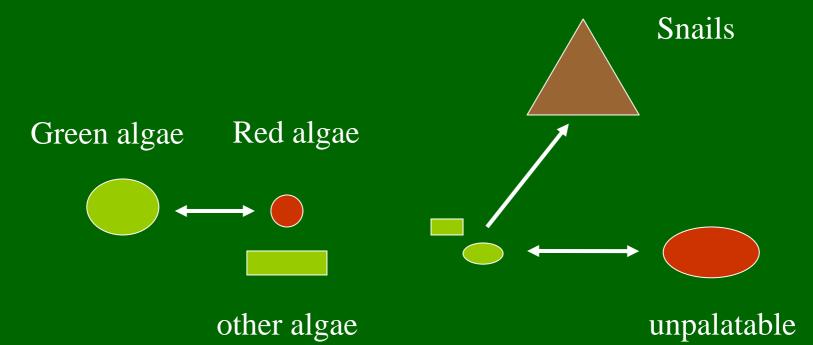
Paine found

- as # species in intertidal FW increased, proportion of predators in FW incr.
 - Total sp: 13→45 (3.5倍)
 - Predator sp: 2→11 (5.5倍)
- higher predator %→predation pressure
 - promoting higher diversity.

Experiments:

- Removal of starfish (top predator)
 - → decline in diversity
 - At Washington, temperate,
 area:8mX2m, 2yr, 15 → 8 sp.
 - At New Zealand, subtropical,
 9 month, 20→ 14 sp

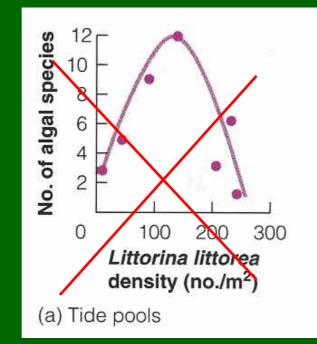

Consumer Effects on Local Diversity

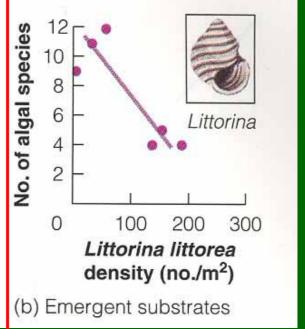

- Lubchenko proposed to resolve the effect of herbivores on plant diversity, you need to know:
 - (1) Herbivore food preference.
 - (2) Competition between plant species.
 - (3) Variance of (2) across environment.

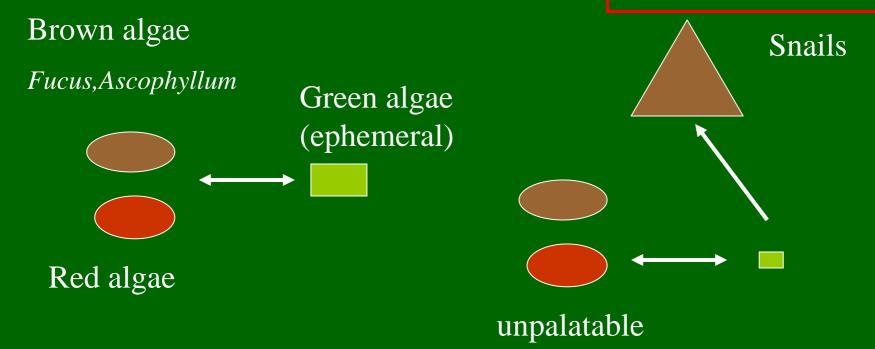
In tidal pools...

- Under normal conditions:
 - green algae (Enteromorpha) out-competes red algae (Chondrus)
 - Snail (Littornia) prefers green algae
 - Green crabs (Carcinus maenus) prey on snails.
 - Crabs are controlled by Seagulls.
- In the absence of snails: <u>red algae</u> is competitively <u>displaced</u>.
- When snails are present.....

Tidal pools






On emergent habitats,

- Algae flora is diff, (bec rock surfaces not submerged in tide pools during low tide)
- Brown algae are dominant (Fucus & Ascophyllum)
- Snails eat competitively inferior species of algae (emphemeral, tender green algae)

Emergent substrata

Fish as River Keystone Species

Power, California,

- Predatory fish:
 - roach (Hsperoleucas symmetricus)
 - steelhead trout (Oncorhhyncus mykiss)
- Fish incr→dec algal densities.
- Thus fish act as Keystone Species.

- Exp: Power 1990, Eel River, California
- Q: whether 2 top predators significantly influence web structure?
- Manipulate the passage of large fish, by 3 mm mesh net, 12 of 6m²-area fig 17.12

Keystone Species: Summation

Power 1996:

 Keystone species are those that exert strong effects on their community structure, despite low biomass.

Chapter Concepts -- exotic predators

- Exotic predators can collapse and simplify food web structure.
 - Exotic species have dramatic impacts on communities because they were outside the evolutionary experience of local prey populations.

Exotic Predators

- EX. Lake Victoria, E Africa (69,000 km², <>60m) depth, original 400 fish sp,
- <>1954, Nile perch (*Lates nilotica*) exotic fish predator were introduced
- 1980s, found: Fish fauna reduced, <> 10 sp
 3 dominate sp:
 - Nile perch (introd),
 - Nile tilapia (introd),
 - omena (native sp)

Exotic Predators

- Kaufman 1992, pointed out changes in Lake Victoria fish community coincide with other ecosystem changes.
 - Dissolved oxygen concentrations significantly decreased. → massive fish kills 1987
 - Cultural eutrophication (human pop incr).

Chapter Concepts -- Mutualistic Keystone species

Ex. A clearner wrasse (Labroides dimidiaus) fish, Queensland, Australia, can remove and eat 1200 parasites from client fishes per day (Grutter 1999)

- Bshary 2003, Mohammed Nat Park, Egypt
- Comparative studies on Reef fish diversity,46 patches (29 natural settings), for 4 month,
 - → 24 % diff, fig 17.18

Chapter Concepts -- Human as Keystone species

- EX. Redford 1992, tropical rain forest, Amazon
- Human effect on animals?
- Subsistence hunting led to
 - 60million animals deaths per year
 - Concentrate on larger birds and mammals
 - 18% sp composition = 75% biomass fig 17.21

"The big things that run the world"

- John Terborgh 1988
- Ex. Barro Colorado Island, Panama, no large predators (pumas, jaguars)
 - → medium-sized mam sp
 - > 10 folds than # sp at other area
- → deer?

- Redford warned: "We must not let a forest full of trees fool us into believing all is well."
- Tropical rain forest conservation must also include the large, and potentially keystone animals whaich are vulnerable to humting by humans.

END!